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Introduction 
The Teknowledge HPKB team integration effort resulted in the development and integration of large knowledge 
bases and knowledge based tools that were successfully transitioned to several DoD customers.  The project 
significantly advanced the state of the art in ontology and knowledge base development resulting in a number of 
publications (Pease et al, 2001, 2000) (Cohen et al, 1998).  Of particular scientific interest was a set of formal 
experiments that were conducted and described in technical reports and academic publications that quantified the 
value of knowledge base technology (Cohen et al, 1999).  The project also laid the groundwork for further efforts in 
ontology development and standardization (Pease & Niles, 2002). 
The Teknowledge integration approach was integration of components using a single large ontology based on Cyc.  
A significant result was the development of a version of Cyc for government distribution, which contained an 
Integrated Knowledge Base (IKB) and Integrated Development Environment (IDE).  This software built on Cyc and 
included the ontology content developed during the HPKB project by our team. 
The HPKB project was structured to have several Challenge Problems that motivated and evaluated research 
progress.  The Crisis Management Challenge Problem was focused on knowledge-based inference and the domain 
was reasoning about international crisis situations.  The Battlespace Challenge Problem went through several 
iterations but wound up focusing on planning for battlefield workarounds and critiquing Army Courses of Action 
(COAs).  The latter technology focus was on an integration of knowledge based sketching, restricted English to 
logic translation, problem solving, and knowledge-based inference. 
Key accomplishments of the integration team with respect to the challenge problems include: 

• Delivery of a knowledge based reasoning system for the Crisis Management Challenge problem that 
consistently out-performed that of the competing integration team (see Figures 4 and 5 below) 

• Delivery of an integrated battlefield plan critiquing system that included core technology for inference, 
plan sketching, and a large ontology created by our team.  Our critiquing system answered all the challenge 
problem questions that the technology developers in the program did not want to address (which was 
roughly half the questions posed).  See Figure 1 below. 

 
A permanent record of the HPKB project and its results was created at http://projects.teknowledge.com/HPKB.  To 
date there have been over a million unique accesses of this site which forms a significant resource for the AI 
community. 
One programmatic conclusion that we reached during the course of the project was that the most successful 
integrations occur when the integration team also plays a role as technology developer, implementing research ideas 
as new components, as well as in providing “glue” for existing components. 
In this report, we provide a narrative of accomplishments and a set of papers that describe the technical detail of 
some of those accomplishments. 
Accomplishments in 1997 

• Created Java interfaces for Cyc and NWU's SME (analogy reasoner).  These interfaces were delivered very 
early in the course of HPKB and allowed us to make rapid progress later in interfacing systems. 

• Early in the project we created the HPKB web site as a means for coordination and for recording progress. 
We posted kickoff meeting briefings to the web site at and worked with HPKB participants to define their 
integration deliverables and posted those deliverables to the HPKB web site.  By the end of the first year of 
the project there were over 900 web pages on the site. 

• We prepared a first version of an API document for our knowledge based system, a first version of the 
MELD language specification document that described the formal language that the system uses, and a first 
executable implementations including an Integrated Knowledge Base (IKB) and Integrated Development 
Environment (IDE). 

• We reached agreement in the program to use a single upper ontology based on the Cyc upper ontology 
with additional contributions from Stanford and others.   

• We gave several training courses on the Cyc system and ontology which were attended by most program 
participants 

• We implemented an initial prototype GUI for the Crisis Management Challenge Problem (CMCP).  This 
product allows a user to fill in information relevant to each phase CMCP problem solving.  This system 
was presented to the CM SMEs and used to clarify information during initial Knowledge Acquisition (KA) 
sessions. 
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• We formalized and answered the Crisis Management Challenge Problem (CMCP) questions. Over half of 
the questions were answered successfully.  

• We created a Network Flow Problem Solver (NFPS), based on (Ford & Fulkerson, 1956), integrated it 
with Cyc and developed a graphical front end.  The interface allows a user to place transportation nodes on 
a map, define the traffic capacities between the nodes, and activate NFPS to find the bottlenecks in the 
system.  This supported the Battlespace challenge problems. The integration with Cyc allowed us to reason 
with the output of the mathematical algorithm and make recommendations or answer questions about the 
traffic and trafficability situation on a battlefield. 

• We integrated dynamic recognizers, developed by UMass, into our Situation Assessment problem solver.  
The integrated system reads data from a track file supplied by Alphatech, locates features in the data and 
asserts factual statements about the presence of those features to the ArcView GIS. This GIS-based 
graphical user interface supports visualization of battlefield events.  It also includes some simple filtering 
rules that allow the large volume of data to be pared down to a reasonable size.  Those features can then be 
sent on to Cyc for further knowledge based processing. 

• We developed a Crisis Management Assistant based on a workflow specification created by AIAI. We also 
performed an initial integration with NWU's SME product. 
Accomplishments in 1998 

• We reviewed and assisted IET with their development of parameterized forms that can be used for 
specifying knowledge base queries and developed a GUI for entering those parameterized forms. 

• We delivered a MELD-to-KIF translator 
• We developed an ontology for battlefield workarounds 
• Designed Workarounds problem solver, created specs for a planner and wrote axioms that the planner uses 

to solve the problem.  Initial efforts included working with Alphatech to define the problem and working 
with MRJ personnel to define informally the rules that a workarounds engineer follows.  Next, we 
developed the formal axioms in Cyc with support from AIAI.  In addition, we worked with AIAI to 
integrate their workarounds problem solver with Cyc 

• We created a translator which converts from the Alphatech Workaround input forms into CycL/MELD 
forms.  This translator had the added benefit of discovering anomalies in the inputs, which were then 
communicated to Alphatech. 

• We developed an interface between Java and the ArcView GIS in order to support the Workarounds 
Challenge problem. 

• We delivered the full ontology required for stating the CMCP Parameterized Questions (PQs), instantiating 
them, and stating the answers to the instantiated PQ's. 

• We created a data dictionary and then formalizations in logic of GIS data supplied by Alphatech.  We then 
integrated this content with the Cyc KB.   

• We began work on quantifying knowledge base size and rates of content development.  (See figures 2 and 
3 below). 

• We added formal ontology content derived from EIA (Energy Dept) web pages, and CIA World Factbook.  
We developed new formal ontology content for preconditions and hypothesized actions and their 
consequences in support of the Workarounds Challenge Problem 

• We integrated the NWU trafficability engine.  This consisted of creating Cyc constants and axioms to 
allow communication of information, implementing a lightweight subset of the KQML protocol that NWU 
uses, and creating a GUI front-end.  

• Our CMCP results were very good; they were high both in an absolute sense (generally in the 50-90% 
range) and relatively - surpassing the SAIC team on each and every one of the seven batches (see figure 4 
below). 

• Delivered a translator that converts from a vehicle movement database developed by Alphatech to CycL.  
The database, called FIRE&ISE, encodes all the input and ouput information for both the Workarounds 
and Movement Analysis challenge problems.  By creating a product which could stand between the F&I 
database and the knowledge tools in HPKB, we avoided haggling over Alphatech’s representation and 
allow the community to make progress on solving the challenge problem 

• Completed integration of products from SRI, Stanford SMI, MIT, UMass.  They were integrated through a 
monitoring system that filtered the input data according to user specified conditions and sent the filtered 
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data to the four systems.  The monitoring systems then collected the results, converted them to Cyc and 
also sent the output to a visualization system built on the ArcView GIS 

• Integrated the NWU trafficability engine.  This consisted of creating Cyc constants and axioms to allow 
communication of information, implementing a lightweight subset of the KQML protocol that NWU uses 
and creating a GUI front-end. The software reasons about travel capabilities and travel times for various 
vehicles over terrain specified in a GIS. 

• We delivered an initial ontology for the Battlespace COA problem.  It includes over 100 constants and 
roughly five axioms for each constant and covers all the terms that Jim Donlon and Alphatech highlighted 
as being the most important in representing COA symbols. It includes a: planning ontology, military units 
ontology, high level military task ontology, specific military tasks, militarily significant areas, military 
purposes, task interaction relations, information sources ontology, and a Universal Transverse Mercator 
ontology.  Successive versions of the ontology were posted on the HPKB web site in a version 
management system that allowed developers to track changes to the ontology. 
Accomplishments in 1999 

• We delivered a prototype COA drawing tool built on top of the ArcView GIS.  This tool allows a user to 
place military unit symbols on a map and to draw phase lines and lines of responsibility.  The information 
can be saved or loaded.   A file interface format was also specified so that other tools can work with this 
information.  The drawing tool generates formal logic statements that are equivalent to the visual content of 
the sketch. 

• We worked with Textwise to integrate their text processing and CycL generation system with Cyc.  This 
resulted in a system that took individual English sentences, converted them to Textwise's CRC 
representation and then translated a portion of these to CycL statements. 

• We participated in the COA Crtiquing CP evaluation, answering as many questions types as all the other 
participants combined. In addition, we generated the test problem input for ISI, GMU, and NWU in the 
COA ontology from a graphical representation and structured English test input.  (see figure 1)  

• We integrated of the NWU geographic reasoner with Cyc and used it in answering several of the CMCP 
test questions.   

• We delivered a workarounds planning system that coupled plan generation rules to a faster planning 
algorithm than our initial Cyc-based approach.  Several of the test problems can now be solved in a quarter 
of a second as opposed to several minutes with the old planner. 
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Abstract 
 

We address the experiences of the DARPA 
High Performance Knowledge Bases (HPKB) 
(Cohen et al., 1998) project in practical 
knowledge representation.  The purpose of the 
HPKB project was to develop new techniques 
for rapid development of knowledge bases. 
The goal of this paper is to describe several 
technical issues that arose in creation of 
practical KB content. 
 
 

HPKB PROJECT 

EXPERIMENTS 
The project had two main objectives:  first, to advance 
the science of Artificial Intelligence Knowledge 
Representation and Knowledge Base content creation, 
and second, to apply these technologies to create 
applications with utility to the Department of Defense.  
The applications were specified as two Challenge 
Problems (CPs).  The first was the Crisis Management 
CP, an effort to develop an automated question 
answering system that met the needs of analysts who 
must be informed about emerging world crises.  The 
second was the Battlespace Challenge Problem.  This 
effort covered two knowledge-based systems.  One 
reasoned about battlefield engineering tasks such as 
workaround computation; the other critiqued battle 
plans.  This paper addresses issues primarily from the 
experiences of the Crisis Management CP. 

PROJECT ORGANIZATION 
Two teams worked on these challenge problems.  In the 
Crisis Management CP, one team used Cyc (Lenat, 
1995) and its MELD (Cycorp, 1997) representation 
language.  Another used KIF (Genesereth & Fikes, 
1992) and the SNARK (Stickel et al., 1994) and ATP 
theorem provers. 

HPKB was a very large project and many aspects are 
not even mentioned in this paper.  The interested reader 
should refer to the HPKB web site (HPKB Web, 1999) 
and publications list (HPKB Pubs, 1999). 

TRADEOFFS IN THEORY CREATION 

There is a cost in creating reusable representations.  It 
is more costly to create representations that will be 
reusable across multiple domains than it is to create a 
representation that is suitable for just one application.   

We believe there is a need for a more formal 
development process that is built on some of the best 
practices from the software engineering community.  It 
is always easier to create specific and limited content as 
opposed to crafting a general domain theory.  The 
challenge is to build time into the development process 
for planning and systems analysis, design, 
implementation, testing, and rework and 
generalization.  Much like the spiral development 
model advocated by Booch (Booch, 1994) and others, a 
good development process iterates through these stages 
several times during a development process.  One 
possible instantiation of this process would be as 
follows: 

DEVELOPMENT PROCESS 
Planning and systems analysis.  It is essential to 
determine the need that the knowledge must fulfill.  
Will it be used for inference?  To define a semantics for 
natural language interpretation? As an interlingua for 
cooperating agents or software modules?  Each of these 

* The author performed this work while a member 
of the Knowledge Systems Laboratory, Stanford 
University  
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applications will entail a different emphasis on the 
richness of the formalization.   

Also considered should be the performance 
requirements of the implementation.  How fast should 
the resulting inference be?  Will the knowledge base 
need to be augmented with a significant amount of 
instance data?  Is logical completeness a necessity? 
Answering these questions will help to determine how 
expressive the knowledge representation can be, which 
will in turn partially determine the inference engine that 
needs to be employed.  

We should note that in the HPKB project, a great deal 
of the systems analysis phase was done for the 
knowledge base developers by providing them with a 
Challenge Problem (Schrag, 1999:2) that specified and 
detailed the scope and purpose of the experiments that 
were to come.  A great deal of informally specified 
knowledge was also provided. 

Design.  One way to design a knowledge base is 
initially to specify it informally.  The engineer creates 
English examples illustrating sample reasoning chains.  
Glossaries with English definitions are created.  It can 
also be useful to create a taxonomy as a skeleton on 
which the theory can be developed. 

Implementation.  As in software development, if the 
two previous phases are done properly, the 
implementation phase can proceed quickly.  It is 
important that all members of the development team 
participate in the first two phases.  Also helpful is a 
formal review process led by a chief knowledge 
architect. 

Knowledge architects, software architects, and building 
architects all have similar roles.  While they do not 
control every detail of a project, they set the overall 
design, standards, and aesthetics.  A knowledge 
architect provides guidance to his team about how to 
meet project requirements, find a balance in tradeoffs 
between development speed and implementation 
generality, maintain consistent approaches across 
diverse team members, and set standards for reviews 
and documentation.  A good architect manages by 
objectives and standards, which result in an 
implementation that speaks with one voice while 
allowing participants the freedom to innovate. 

Testing.  While this phase is obvious for any 
knowledge base that is to be used in a computational 
system, performing systematic testing is often ignored.  
If the knowledge base has been developed in a modular 
manner, an equivalent to unit testing can be performed 
on each small theory.  Unit testing allows for testing of 
greater coverage than final integration testing. 

Rework and Generalization.  This phase is the most 
often ignored simply because of the dynamics of most 
research projects.  Once the practical objectives of the 
sponsors have been achieved, little time or money 

remains in the project to correct shortcuts that may 
have been made.  However, this phase is possibly the 
most important if incremental scientific results are to be 
achieved. 

Any large scale project will necessarily go through the 
above phases several times.  A good knowledge 
engineering process has many similarities to a good 
software engineering process. 

THEORY REUSE 

Both teams reused the HPKB upper level (HPKB-UL) 
ontology, derived from Cyc, during the project.  The 
representation for the temporal knowledge available in 
the HPKB upper ontology was very well designed.  
From the HPKB-UL, we also used representation for 
communicative actions, slots on actions (agent roles), 
and the primitives for representing paths.  For one 
team, reusing these theories required translating the 
representation, extracting portions of the input ontology 
for use, and doing limited reformulation. There was 
also the need to further extend the library of the 
representation primitives for causality, scales, actions, 
processes, and qualitative influences. 

The Cyc-based team had access to the entire Cyc 
knowledge base.  In addition to areas mentioned for the 
upper level, there are good theories for concrete 
physical domains of all sorts. Theories of belief, goals, 
trust, and the expression of causality in 
nondeterministic human events are essential and less 
well developed.   

HPKB had a good record of reusing terms and basic 
statements about terms.  Developers gained a great deal 
of value from inheriting a large set of precise 
distinctions about things in the world, such as the 
differences among a goal, a plan, and a desire.  
However, comparatively little reuse of general rules 
was evident.  This can be explained in several ways: 

• It's hard to write truly general rules. 

• Insufficient effort has been placed into writing 
general rules because of the pressures of day-to-
day results. 

• Practicalities of inference are such that a long 
chain of reasoning involving general rules doesn't 
work in a reasonable amount of time.  One has to 
"short-circuit" the deep reasoning with special-
purpose rules that make the inference tractable. 

As an example of reuse, consider the following 
inference task performed by our system: 

What risks can Iran expect in sponsoring a terrorist 
attack in Saudi Arabia? 

To answer questions of this type, one team developed a 
simple cause-effect model. All the predicates below, 
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including cause-event-event, beneficiary, and  
maleficiary were reused from the HPKB-UL. Even 
though we capture only direct effects of an action, this 
simple model was effective in practice.  This example 
illustrates the reuse of notions of causality that were 
already conceptualized in the HPKB-UL.  The 
following is an example application of these 
representation primitives. 

(forall ((?terrorist-attack  
            terrorist-attack)  
         (?agent agent)) 
(=> 
  (performed-by ?terrorist-attack ?agent) 
  (exists 
     ((?punishment punishment)) 
     (and  
        (causes-event-event  
            ?terrorist-attack  
            ?punishment) 
    (maleficiary ?punishment ?agent) 
    (object-acted-on  
            ?punishment ?agent))))) 
 
(forall ((?action action)  
         (?action1 action1)) 
 (implies 
   (and  
      (causes-event-event ?action ?action1) 
      (performed-by ?action ?agent) 
      (beneficiary ?action1 ?agent)) 
   (benefit-of-action   
      ?action ?action1 ?agent))) 
 

A detailed description of technical problems 
encountered in reuse is available in (Cohen et al., 1999) 
(Chaudhri et al., 2000). Even though we reused 
representations for actions and casuality from HPKB-
UL, significant additional representation work needed 
to be done.  This suggests that a representation library 
for actions, causality, and qualitative influences needs 
to be extended.  The theoretical KR community is 
invited to study the HPKB-UL and propose 
representational modules to be included in it. 

PRACTICAL REPRESENTATIONAL ISSUES 

There was a lack of principles for designing 
taxonomies. As a result, creating and maintaining a 
taxonomy of primitive concepts became increasingly 
difficult as its size grew.  Conventional description 
logic techniques do not help in creating taxonomies that 
contain a large number of primitive concepts. Better 
principles for taxonomy design are needed. 

There was also the need to "hand-compile" deep 
reasoning out into special-purpose theories that had 
tractable inference chains. 

TAXONOMY 
Like many other KBs, the class-subclass taxonomy was 
an overarching organizing principle in our HPKB KB.  

A class-subclass taxonomy serves as an indexing aid to 
find knowledge and add new knowledge, and to serve 
as a method to efficiently write axioms by using 
inheritance.  

While designing the taxonomies for the HPKB project, 
we encountered the following problems: 

1. As the taxonomy got bigger, it became increasingly 
difficult to add new concepts to it. As a result, there 
were concepts that had incorrect positions in the 
taxonomy:  

• Some concepts had missing links.  A class has a 
missing super-class link if it is a subclass of 
another class B, but the subclass relationship is not 
declared. 

• Some concepts had wrong links. A class has a 
wrong link in a taxonomy if it is a direct subclass 
of B, but the subclass relationship does not hold 
true. 

2. We were encountering concepts that were being 
created by a cross-product of two sets of concepts, for 
example: 

{International, transnational, subnational, 
national} x {organization, agent} 
{Support, oppose} x {attack, terrorist-
attack, chemical-attack}    {Humanitarian, 
political, military, diplomatic} x 
{Organization, Action} 

 
3. Some concepts had a very large number of 

subclasses.  In some cases, this was due to 
orthogonal ways to categorize a concept.  As a 
result, such categorizations were not mutually 
disjoint.  Large fan-outs made it cumbersome to 
navigate through the taxonomy.  As an example, 
consider the following snippet from the taxonomy 
representing organizations. 

 

 

Figure 1. A portion of a taxonomy 
representing organizations showing 

orthogonal categorizations 
 
While the categorization of commercial organization 
and unincorporated organization is based on the legal 
status of an organization, the categorization of 
international organization and subnational organization 
is based on extent of operations.  Mixing such 
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  (performedBy ?X ?Y) orthogonal categorizations adds to the complexity of 
the taxonomy.   (members ?X USMilitaryOrganization))                

in which the action has been expanded to describe an 
action type and detail about the performer of the action.  
We can further decompose the action by describing it 
as an event that has the purpose of maintaining a 
particular state.  

4.  If two classes are disjoint, the disjointness 
relationship must be declared. 

5.  There should be no redundant classes representing 
identical concepts. 

(and A taxonomy is well designed if it is free from all the 
problems mentioned above. Ensuring these properties 
in a small taxonomy is easy even if it is done manually.  
However, as the taxonomy size grows, making 
taxonomy well structured manually is very time 
consuming. These problems are indicative of a poor 
design methodology for developing taxonomies.  We 
argue below that these problems go away if one takes a 
more principled approach to developing these 
taxonomies and supports additional constructs to 
structure the taxonomies. 

  (toMaintain ?Y PeaceAccord) 
  (instance-of ?Y MilitaryOperation) 
  (performedBy ?X ?Y) 
 (members ?X USMilitaryOrganization))                     

 (Schrag, 1999:1) has proposed the following 
compositionality hypothesis: noncompositional 
representations are inexpensive to build but they are 
brittle with respect to weak problem generalizations 
and must be re-engineered (for example, into 
compositional representations) or replaced. 

According to the compositionality hypothesis, the first 
representation is inferior to the later versions.  
However, although many knowledge engineers would 
have a strong intuition that the later representations are 
superior, there is no strong empirical basis for the 
proposed criticism of the first representation.  One 
approach that would admit the first representation as 
acceptable would be to add additional terms to the KB 
and give a more complete definition to it.  Thus, even if 
the first representation is noncompositional, it is 
amenable to generalization if an application requires it. 

If every concept has necessary and sufficient 
definitions, one can use a classifier to help alleviate 
Problem 1.  In practice, we found that too many 
concepts were primitive and did not have necessary and 
sufficient definitions.  Therefore, we cannot use a 
classifier. Problem 1 stems from the fact that the 
taxonomy itself is getting too complex.  For example, a 
concept is linked or needs to be linked to too many 
different places.  As a result, defining a new primitive 
concept involves manually encoding its relationship to 
numerous other primitive concepts -- a process that is 
error prone. One would hope that the process of 
organizing such concepts into a taxonomy would be 
considerably simpler than doing the same thing for the 
original concepts. 

The relative comparison between the two 
representations is unlikely to have a context-
independent answer.  If in the current application we 
never need to represent or reason with conduct, 
mission, or peacekeeping, other than talking about 
"conduct peacekeeping mission", the less expressive 
representation is adequate.  One can certainly argue that 
the first representation is less reusable.  However, that 
depends on the next application.  If we use the first 
representation, and the next application requires us to 
represent or reason with conduct, mission, or 
peacekeeping, it is possible to add them to the KB and 
use them to define UsConductOfPeacekeeping. This 
may be studied more formally with an analytical model 
as follows. 

We need principles for taxonomy design that can 
enable us to economically create and maintain large 
taxonomies of primitive concepts. 

COMPOSABLE REPRESENTATIONS 
We believe that representations are more reusable if 
they are compositionally constructed.  A representation 
is compositional if it represents each individual concept 
in the domain of discourse, and the representation of 
complex concepts is obtained by composing 
representations of individual concepts.  To illustrate 
this, consider the representation of the following:  

Suppose we design two representations, one of which 
uses n1 terms and the other uses n2 terms.  Suppose 
cost/term is c and is constant in both cases. The cost for 
building a KB for the two cases is c*n1and  c*n2, 
respectively. 

The USA conducts a peacekeeping mission. 
In this example, we can use several different 
representations. One degenerate representation might 
be If speeding up KB construction time for just one 

application is the objective, a compositional 
representation can be bad! However, if we also care 
about reuse, that may not be necessarily so.  Does 
compositionality enable reuse?  We cannot find out 
until we run replicated trials. 

UsConductOfPeacekeeping  
This representation compiles all the semantic features 
of the English statement into a symbol.  A more 
reasonable representation might be 

(and 
  (instance-of ?Y PeacekeepingOperation) 
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Suppose we reuse the KB for a new application.  This 
new application requires the same knowledge fragment 
that we have already coded but requires a different 
compositionality, and we end up defining n3 new terms 
for the first representation and n4 new terms for the 
second representation. It is possible that either of n3 or 
n4 is zero. The cost for the new application is c*n3 and  
c*n4, respectively. 

along with defining a set of actions as subclasses of 
"opening markets" actions. 

The goals of a project can strongly bias a knowledge 
engineer to the second representation.  If a research 
team is scored, or a development team is paid on the 
basis of "correct" answers, compositionality and deep 
reasoning will be sacrificed. 

The objective should be to minimize c*(n1+n3) or 
c*(n2+n4).  The model can be generalized to N 
applications.  The parameter c can be viewed as time to 
construct a KB, and thus linked directly to the program 
goal of speeding up the KB construction time.  Further, 
this model allows us to do the following: 

METRICS 
For any practical KB content creation work, there is a 
need to state crisply the competence level of a KB, and 
to make claims about increasing competence as the 
time goes along. Even though we know that there is an 
intuitive relationship between the size of a KB and its 
competence, there is no foolproof way functionally to 
relate the size to competence. As an approximate 
measure, we used the axiom count in a KB as one 
measure of competence.   

a) Measure whether it is really worth decomposing a 
representation 

b) Amortize the higher cost of decomposition over a 
number of applications 

c) Make explicit the relationship between reuse and 
compositionality 

An early challenge during the project was to define 
what counts as an axiom. Given that there is no 
universal way to count axioms, and that the axiom 
counts are sensitive to the modeling style and the 
language, we developed the following scheme for 
categorization of axioms in a KB.  

Exploring this tradeoff is open for future work. 

"COMPILED" REPRESENTATIONS 
• Constants are any names in the KB, whether an 

individual, class, relation, function, or a KB 
module 

One of the HPKB Challenge Problems dealt with 
reasoning about economic actions. One might encode 
the following chain: 

There exist economic actions  • Structural statements are ground statements 
using any of (Cyc term/Ontolingua term) 
#$isa/instance-of, #$genls/subclass-of,  
#$genlPreds/subrelation-of, 
#$disjointWith/disjoint, 
#$partitionedInto/disjoint-decomposition, 
#$thePartition/partition, #$genlMt, 
#$argXIsa/nth-domain (where X is a digit), 
#$argXgenls/nth-domain-subclass-of (where X 
is a digit), #$arity/function-arity/relation-
arity, #$resultIsa/range, 
#$resultGenls/range-subclass-of 

which open markets - 
    opening markets encourages  
    exports - 
        increasing exports improves  
        a country's trade balance -  
            positive trade balance  
            improves economic health - 
                all countries are  
                interested in  
                economic health 

However, it may be that in practice, because of the 
complexity and compositionality of each of the 
encoded statements, and the depth of the inference, 
such a reasoning chain does not terminate in a 
reasonable amount of time.  While an inference of 
depth five may not seem very taxing, consider the fact 
that this set of rules exists in a very large KB along 
with tens of thousands of others.  The task of matching 
these particular rules and determining that huge 
numbers of others are irrelevant is time consuming. 

• Ground facts are any statement without a variable. 

• Implications include any non-ground statement 
that has an #$implies (note that a ground 
statement that contains an #$implies is counted as 
a ground statement) 

• Non-ground, non-implications are statements that 
contain variables but not an implication. The result is that to create a reasoning system that 

reaches a conclusion in a short amount of time, one 
might have to encode This categorization is imperfect, but it is easy to 

implement and was applicable to both of the crisis 
management systems developed during the HPKB 
project. 

There is a set of actions  
which open markets - 
    opening markets contributes  
    to economic health - The structural statements have an intuitive status in 

most systems: for SNARK the structural information is 
sort information, for Cyc the structural information is 

        all countries are interested  
        in economic health 
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 called definitional, and for description logic systems the 
structural relations are usually called concept 
constructors. The statements with implications are 
rules. Ground facts often represent knowledge that can 
be found in an almanac or database.  

(forall ((?x action)  
         (?y action)  
         (?z country)) 
    (=> 

A weakness of this categorization is that it counts many 
statements as ground statements even though they are 
not actually ground. For example, the statements 
involving template-slot-value, and 
#$relationAllExists are counted as ground. Further 
refinement to this categorization is left open for future 
work. 

       (and 
          (may-cause ?x ?y) 
          (performed-by ?x ?z) 
          (maleficiary ?y ?z)) 
          (risk-of-action  
              ?x ?z ?y))) 
 
(forall (?x ?y ?z) 
    (=> 
       (and 
          (instance-of ?x action) The axiom categorization scheme gave us an empirical 

tool to compare content across the two systems 
developed in the project. We would welcome proposals 
from the theoretical KR community, detailing more 
systematic ways to measure the competence of a large 
KB. 

          (instance-of ?y action) 
          (instance-of ?z country) 
          (may-cause ?x ?y) 
          (performed-by ?x ?z) 
          (maleficiary ?y ?z)) 
       (risk-of-action ?x ?z ?y))) 
 
(forall (?x ?y ?z) 
    (=> 
       (and STANDARDS           (action ?x) 
          (action ?y) Having a standard syntax is a necessity, but standard 

syntax plays a relatively small role in addressing the 
practical challenges facing the knowledge engineer. 
There is a need to move from an emphasis on standards 
of syntax, or on defining a precise semantics for tiny 
theories, to standard large theories and style guides for 
axiom writing. 

          (country ?z) 
          (may-cause ?x ?y) 
          (performed-by ?x ?z) 
          (maleficiary ?y ?z)) 
       (risk-of-action ?x ?z ?y)) 

 
One additional factor might be that may-cause and risk-
of-action could be defined as referring to types of 
actions rather than instances in different knowledge 
bases. 

For example, the subclass relationship can be either 
stated as  

1.  (subclass-of A B),  or as  These three forms are equivalent and follow the ANSI 
KIF standard.  In spite of the standard, people come up 
with sufficiently different ways to write axioms to 
make the knowledge exchange difficult.  Therefore, the 
standards must be accompanied by a style guide before 
they can enable knowledge exchange. In the above 
example, the style guide could require that the type 
information for axioms should always be stated in the 
quantifier specification. 

2.  (=> (A ?x) (B ?x)) 
 
Both of these forms are ANSI KIF. The first form uses 
subclass-of as a relation to compactly encode 
information that could also be written as in Form 2.  
The first form also has the advantage that a reasoner 
supporting taxonomic inference can take advantage of 
this form, which can be quite difficult for the second 
form.  

As another example, consider three commonly used 
ways to specify the type information of variables in an 
axiom: (1) using ANSI KIF-style typed quantifiers, (2) 
using instance-of relations, or (3) using the class as a 
relation.  Here is an example axiom encoded in these 
three forms: 

USING A VERY EXPRESSIVE 
REPRESENTATION 

Expressive representations enable a degree of 
generality and reuse not possible with more restricted 
representations.  Because of interactions among 
axioms, the inference time can become very high. The 
most general and reusable theory is not useful if 
inference on those theories is not tractable for your 
inference engine.  Some ways of addressing this 
problem are by partitioning the KB into modules to 
isolate the interactions among axioms, and by 

 13



 

compiling knowledge by hand into more efficient 
representations. 

One team had the goal ot keeping the inference time for 
answering a question to less than 2 minutes.  If all the 
axioms were loaded at the same search space, it was not 
possible to meet this requirement.  Therefore, we 
modularized the KB to limit the interactions among 
axioms and achieve the desired response time.  This 
problem would have been less critical had we limited 
the representation to horn clauses. 

KB modularization means dividing the content of a KB 
into conceptual partitions that serve the basis for KB 
development and inference. We experimented with two 
ways to modularize a KB: subject based and task based.  
A subject-based modularization organizes a KB by 
subject area and can enable easier sharing and 
development of KB content. A subject area can be 
assigned to a knowledge engineer to direct its 
development. While reusing a KB, one can select a KB 
in the subject area of interest.  A task-based 
modularization organizes a KB by the rules and 
individuals that are relevant to a task, thus significantly 
reducing the search space. The class, function, and 
relation definitions do not affect the search space, and 
therefore need not be modularized to speed up 
inference.  

Modularization of a KB based on the subject-based 
criteria and the task-based criteria can be different and 
can coexist. We used both subject-based and task-based 
modularization during the project.  For example, three 
major subject areas covered in our KB are actions, 
agents, and interests. We also created task-specific 
partitions in the KB based on specific parameterized 
questions (PQs).  For example, for answering questions 
about interaction between interests and actions, there 
was no need for knowledge about specific terrorist 
groups in the KB that were kept in a separate partition. 
The approach to modularization described here was 
clearly engineering driven, and better principles to 
arrive at the modularization are needed.  Techniques to 
develop modules for a KB in a way that isolates 
independent reasoning chains are clearly of special 
importance.  

ISSUES IMPEDING PROGRESS 

Inference engine performance is one crucial technical 
issue.  While it is not easy to develop inference 
modules for very expressive features, it is incredibly 
hard to get those modules to perform well.   

Despite the program's name, execution speed was not 
an issue under investigation in HPKB.  Many 
researchers have studied algorithms, speed, and 
complexity.  HPKB was extremely important because it 
focused on content.  Much research on inference 

performance has not been undertaken in the context of 
practical reasoning on large knowledge bases.  The 
challenge now is to focus on merging research on 
creating and reasoning with large knowledge bases with 
research on inference performance. 

The most important nontechnical issue is research 
parochialism.  The need to "own" a language, ontology, 
theory, or protocol is very powerful, whether in terms 
of building a research identity or a commercial base.  
However, this fragmentation is hampering progress. 

Allen’s seminal work (Allen, 1984) (Allen, 1994) on 
representing temporal knowledge is a good example of 
the kind of results that we need, and it is also well 
referenced and adopted in the applied AI community.  
Allen’s work identified the primitives necessary to 
represent a sufficiently large class of temporal 
information and proposed inference procedures.  If we 
could do the same for other domains such as actions, 
space, and causality, etc, it would greatly speed the 
practical KB construction.  It is also the case that 
careful theoretical work has been done in these areas 
but may not be well known or adopted in the applied AI 
community.  This work includes (Cohn et al., 1997), 
(Giunchiglia & Lifschitz, 1998), (Giunchiglia & 
Lifschitz, 1999), (Lifschitz, 1987), (McCain & Turner, 
1997). 

The KR community is still theoretically focused.  Few 
people are interested in working on creating KB 
content. The time is right for a new focus on practical 
KB content creation. 
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Abstract 
One factor that affects the rate of knowledge base 
construction is the availability and reuse of prior knowledge 
in ontologies and domain-specific knowledge bases.  This 
paper reports an empirical study of reuse performed in the 
first year of the High Performance Knowledge Bases 
(HPKB) initiative.  The study shows that some kinds of 
prior knowledge help more than others, and that several 
factors affect how much use is made of the knowledge.  

Introduction 

With current technology, trained knowledge engineers can 
build knowledge bases at a rate of roughly 10,000 axioms 
per person per year, or roughly five axioms/person/hour. 
One factor that affects this rate is the availability and reuse 
of prior knowledge in ontologies and domain-specific 
knowledge bases.  Until now, there have been no 
systematic studies of knowledge reuse.  This paper reports 
an empirical study of reuse.  The study was performed in 
the first year of the High Performance Knowledge Bases 
(HPKB) initiative sponsored by the Defense Advanced 
Research Projects Agency (Cohen et al., 1998).  By 
comparing the efforts of two HPKB groups under different 
conditions, we find that prior knowledge in the form of 
ontologies does help, though many factors affect how 
much it helps.  This work also introduces metrics and 
methods for evaluating the contribution of prior knowledge 
to knowledge-based systems.  

 

By prior knowledge we mean the knowledge one has 
available in an ontology or knowledge base prior to 
developing a knowledge-based system.  Several large 
ontologies have been developed including Cyc (citation) 
LOOM (citation), <Bruce Porter’s system>, …, 1. All these 
systems contain hierarchies of knowledge.  At the upper 
levels, one finds knowledge that is general to many 
applications, such as knowledge about movement, animate 
agents, space, causality, mental states, and so on.  The 
lower levels contain knowledge specific to domains; for 
example, rules for inferring the effects of tactical military 
operations. Bridging general and specific knowledge, one 
finds micro theories (citation); collections of terms and 

                                                           
1 See also http:// … for a web site devoted to ontology-building efforts. 

axioms about phenomena such as human physiology, more 
general than a particular medical expert system but less 
general than, say, knowledge about physical systems. In 
addition to hierarchies of terms, all the ontologies cited 
above contain axioms, for example, “all universities are 
educational institutions”; rules, for instance, “if x is an 
educational institution then x pays no taxes”; and inference 
methods such as resolution or more specialized forms of 
theorem-proving.  Axioms and rules confer a functional 
kind of meaning on the terms they contain, that is, the 
meaning of a term is the things one can legitimately say 
(infer) about it.   

 

One claim of ontologists is that it is easier to build a 
domain-specific knowledge base KB inside an ontology O, 
or informed by O, than without O.  Some of the ways that 
O can help are illustrated in Figure 1.  First, a term p that 
you wish to add to KB might already exist in O, saving 
you the trouble of adding it.  Second, axioms relating to p 
might already exist in O, saving you the trouble of thinking 
them up and encoding them.  Third, within O, p might be a 
subclass of v, so you also have the benefit of axioms about 
v inherited through p.   

 

Now suppose you want to add a concept p’ to KB, and p’ 
is not exactly p, but is similar in some respects.  For 
instance, p might be part of a microtheory about 
economics, and p’ might belong to a microtheory  about 
fluid flows, but both p and p’ represent the concept 
“source.”  More generally, suppose the structure of the 
theory of economics in O parallels the structure of the 
theory of fluids that you are trying to build in KB.  Thus, a 
fourth way that O can help you to build KB is to help you 
structure the theory in KB.  Designing the structure of 
microtheories is very time consuming, so this kind of help 
may be the most important of all.   
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2. Several weeks before testing, a batch of sample 
questions (SQs) was released.  

ontology

p: p(x)&q(x)=>r(x)
isa
v: v(x) => w(x)

p
knowledge- 
based 
system

v'
p's'

s
3. On the first day of the evaluation, a batch of 110 test 

questions, TQA, was released, and the Teknowledge 
and SAIC systems were immediately tested.  After 
four days for improvements, the systems were re-
tested on TQA.    

4. Batch TQB was released immediately after the retest.  
The purpose of TQB, which contained questions 
similar to those in TQA, was to check the generality 
of the improvements made to the systems. 

 
5. After a brief respite, a change was made to the crisis 

scenario, increasing the scope of the problems that 
the Teknowledge and SAIC systems would have to 
solve.  Several days were allowed for knowledge 
entry prior to the release of a new batch of questions, 
TQC, reflecting the new scope. The systems were 
tested immediately. 

Figure 1. Some ways an ontology O can help one build a 
knowledge base KB.  

 

Unfortunately it is difficult to assess experimentally how 
the structure of O helps one build KBs with similar 
structure, so we focus here on the first three ways that O 
can help one build KB.   6. Four days were allowed to extend the systems to the 

new crisis scenario, then the systems were re-tested 
on TQC.  To check the generality of these extensions, 
the systems were also tested on batch TQD, which 
was similar to TQC. 

Metrics 

 

Suppose one wishes to add an axiom, “If x is a state then x 
maintains an army,” to KB.  This axiom contains three 
terms, state, maintains, and army.  Suppose the first two 
terms already exists in O but army does not.  As two thirds 
of the terms required to add the axiom to KB exist in O, 
we say the support provided by O in this case is 2/3.  In 
general, every item i one wishes to add to KB contains n(i) 
terms, k(i) of which are already in O, and support is 
s(i)=k(i)/n(i). Of course, adding army to O changes O, and 
the support offered by O for future axioms might be higher 
because army was added.  Therefore, support is indexed 
by versions of the ontology: s(i,j)=k(i,j)/n(i) is the support 
provided by version Oj of the ontology for concept i.  

 

One of the methodological innovations of this experiment 
was to generate all the batches of questions from a 
question grammar – a set of parameterized questions – 
which had been made available to the participants in the 
experiment several months before testing began.  Batches 
SQ, TQA and TQB were generated by one grammar.  The 
grammar was extended to reflect the change in the crisis 
scenario and used to generate batches TQC and TQD.  
Figure 2 shows one of the parameterized questions (PQ53) 
from the grammar.  Many billions of questions could be 
generated by the question grammar, so it would not have 
made sense to develop systems to solve particular 
questions; however, by getting the PQs early, the system 
developers could limit the scope of their systems to the 
subjects mentioned in the PQs (e.g., terrorist attacks, 
EconomicSector, etc.) 

Experiment Design 

We evaluated the support provided by ontologies during a 
month-long process called the Crisis Management 
Challenge Problem (CMCP).  The CMCP was designed by 
Bob Schrag and his colleagues at IET, Inc. and PSR Corp. 
Two integrated knowledge-based systems were developed 
to answer questions about international crises, such as, 
“What will the US response be if Iran closes the Strait of 
Hormuz?” (Cohen et al., 1998).  The systems were 
developed by Teknowledge and SAIC.  The CMCP had 
several phases: 

 

_______________________________________________ 

PQ53 [During/After <TimeInterval>,] what {risks, rewards} 
would <InternationalAgent> face in <InternationalActionType>?  

<InternationalActionType> =  

{[exposure of its] {supporting,  

sponsoring} <InternationalAgentType in 
<InternationalAgent2>, successful terrorist attacks 
against <InternationalAgent2>'s <EconomicSector>, 
<InternationalActionType>, taking hostage citizens of 
<InternationalAgent2>, attacking targets 

 

1. Some months before any testing began, a crisis 
scenario was released.  The scenario bounded the 
domain and thus the scope of the problems to be 
solved by the Teknowledge and SAIC systems. 
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<SpatialRelationship> <InternationalAgent2> with 
<Force>} 

<InternationalAgentType> = 

{terrorist group, dissident group, political party, 
humanitarian organization} 

 
Figure 3.  A parameterized question suitable for 
generating sample questions and test questions. 
_______________________________________________ 

 

In the following section we analyze how prior ontology – 
what was available before SQs, TQA and TQC were 
released – supported the development of the Teknowledge 
and SAIC systems.  The former system was based on Cyc, 
and much of its development was done at Cycorp, so we 
call it Cyc/Tek here.  The SAIC system was a collection of 
component systems, none of which answered all the 
questions in any test batch.  The one we analyze here, 
developed by SRI International, answered roughly 40 of 
the 110 questions in each batch; we lack data for the other 
components of the SAIC system.  To compare the Cyc/Tek 
and SRI systems properly we will report two sets of results 
for Cyc/Tek, one for all the test questions and another for 
the subset of questions answered by the SRI system. 

 

The Cyc/Tek and SRI systems also differed in the prior 
ontologies available to them.  Long before testing began, 
Cycorp, the developers of Cyc, released their upper 
ontology (UO), which contains very general class names; 
subclass relationships; instance-type relationships; relation 
names and their argument types; function names, their 
argument types, and the types of value they return; as well 
as English documentation of every class, function and 
relation; and a mapping to terms in the Sensus ontology 
developed by ISI.  

 

Whereas the SRI team had access to the UO, only, 
Cyc/Tek had access to all of Cyc.   

Results 

The performance of the Teknowledge and SAIC integrated 
systems is analyzed thoroughly in (Cohen et al., 1998).  
Performance is not the focus of this paper – support 
provided by ontologies is – but two results are germane 
here:  Both systems performed better on the sample 
questions (SQs) than on TQA, and both performed better 
when re-tested TQA and TQC than on the original tests 
performed four days earlier.  In the four days between test 
and retest, significant improvements were made to the 

systems.  The question is, how much did the prior 
ontologies help in making these improvements? 

 

We present results for two kinds of knowledge 
development.  One is the development of knowledge 
sufficient to encode in a formal language the test questions 
in each batch, the other is the development of knowledge 
to answer the test questions.  Results for the former are 
summarized in Table 1.  The columns of the table represent 
the SRI system, which was tested on roughly 40 questions 
in each batch of 110; the Cyc/Tek system tested on the 
same questions as the SRI system; and the Cyc/Tek system 
tested on all 110 questions in each batch.  Three numbers 
are reported for each system:  n is the number of terms 
needed to encode all the questions attempted (i.e., roughly 
40 or 110); k is the number of terms available in a prior 
ontology; and s is the ratio of k to n.  The rows of Table 1 
represent the batches of questions and the help provided by 
different prior ontologies.  For example, the notation SQ | 
UO means “the help provided by the upper ontology (UO) 
in encoding the sample questions (SQ).”  One can see in 
this row that SRI needed 106 terms to encode roughly 40 
of the sample questions, and 22 of these terms were found 
in the UO, so the help provided by the UO is 22/106 =.21.  
Encoding the questions in SQ required a number of terms 
to be added to the ontologies, and these terms were 
available to help encode questions in TQA and TQC.  The 
notation TQA | UO denotes the help provided by the UO 
only, whereas TQA | SQ denotes the help provided by 
everything encoded up through SQ.  Similarly, TQC | TQA 
denotes the help provided in encoding the questions in 
TQC by the terms in the ontology including those defined 
for SQ and TQA.  Because the Cyc ontology is cumulative, 
these conditions – in which terms defined for earlier test 
questions are used to encode later test questions – are 
reported in rows labeled “Cyc” in Table 1.  For instance, 
418 terms were required by Cyc/Tek to encode the 110 
questions in TQA, 402 of them were available in Cyc, 
including some defined when the sample questions SQ 
were added.  Note that SRI did not have access to Cyc, so 
all rows in which questions were encoded with the help of 
Cyc are marked n/a for SRI.   

 

 SRI Cyc/Tek(40) Cyc/Tek(110) 

 n k s n k s n k s 

SQ | UO 104 22 .21 201 75 .37 377 126 .33 

SQ | Cyc n/a n/a n/a 201 153 .76 377 280 .74 

TQA | UO 104 20 .19 168 67 .4 418 126 .30 

TQA | SQ 104 81 .78 n/a n/a n/a n/a n/a n/a 

TQA | Cyc n/a n/a n/a 168 168 1.0 418 402 .96 

TQC | UO 106 16 .15 277 81 .29 402 131 .33 
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TQC | TQA 106 82 .77 n/a n/a n/a n/a n/a n/a 

TQC | Cyc n/a n/a n/a 277 270 .97 402 395 .98 

 

Table 1.  Support (s) provided by ontologies for the development 
of problem solving systems to answer batches of test questions.   

 

Cyc/Tek had higher support numbers in all conditions than 
SRI, meaning they found more terms in their prior 
ontologies than SRI did.  However, we have broken the 
data into support provided to Cyc/Tek by all of Cyc vs. 
support provided by just the upper ontology, which SRI 
had.  For example, the first row of Table 1 shows that to 
encode roughly 40 sample questions, SRI required 104 
terms of which it found 22 in the UO; whereas Cyc/Tek 
required 201 terms to encode the same questions, and 
found 75 in the UO.  Similarly, Cyc/Tek required 377 
terms to encode all 110 sample questions, and found 126 in 
the UO.  

 

Cyc/Tek required more terms to encode test questions 
(3.62 terms/question) than SRI (2.61 terms/question, and 
got more support from prior ontologies. For example, for 
Cyc/Tek to encode the roughly 40 questions in the TQA 
batch that SRI encoded, they required 168 terms, all of 
which existed in the Cyc ontology.  

 

In one respect, the SRI and Cyc/Tek results are very 
similar.  The reuse rate of terms not in the upper ontology 
– terms in Cyc or terms developed for earlier batches of 
test questions – was 60%-65% for both SRI and Cyc/Tek, 
across question batches TQA and TQC.  This result is 
shown in Table 2.  The columns in this table represent the 
number of terms needed to encode a test batch, N; the 
number found in the upper ontology, K(UO); the number 
found elsewhere, K(other); and the ratios of K(UO) and 
K(other) to N. That is, the support provided by terms in the 
upper ontology is s(UO)=K(UO)/N, while the support 
provided by other prior ontology is s(other)=K(other)/N.  
Note that s(other) ranges from .59 to .68 for test batches 
TQA and TQC.  In fact, the overall reuse of non-UO terms 
for Cyc/Tek and SRI was .66 and .60, respectively; 
whereas the overall reuse of UO terms for Cyc/Tek and 
SRI was .32 and .17, respectively.  Thus, much of the 
difference in reuse statistics between SRI and Cyc/Tek is 
due to their exploitation of the upper ontology.  Said 
differently, 22% of the terms SRI reused came from the 
upper ontology while the figure was 33% for Cyc/Tek. 

 

 

 

 

 

 

 

 N K(UO) K(other) S(UO) S(other) 

SRI TQA 104 20 61 .19 .59 

SRI TQC 106 16 66 .15 .62 

Cyc/Tek TQA(40) 168 67 101 .40 .6 

Cyc/Tek TQC(40) 277 81 189 .29 .68 

Cyc/Tek TQA(110) 418 126 276 .30 .66 

Cyc/Tek TQA(110) 402 131 264 .33 .66 

Table 2.  Support provided by terms in UO and terms from other 
prior knowledge bases and ontologies.   

 

In addition to encoding test questions, Cyc/Tek and SRI 
developed knowledge to answer the questions.  This 
knowledge, called axioms generically, is composed of 
terms, so we can ask how prior ontologies helped the 
development of axioms.  As before the relevant metric is 
s(i,j)=k(i,j)/n(i), only here, n(i) denotes the number of 
terms required to encode the ith axiom.   

 

SRI provided data on how ontologies supported writing 
axioms. The rows of Table 3 represent the phases of the 
experiment and the source of prior ontology.  The first 
row, SQ | UO shows that 1703 axioms were encoded to 
solve the sample questions SQ, and these axioms required 
461 terms, of which 51 were in the upper ontology, UO, 
for a support value of 0.11.  The second row shows that in 
the four days between the test and retest on batch TQA, 
123 axioms were encoded, requiring 195 terms.  30 of 
these terms were found in the UO.  The third row shows 
that 109 of the 195 terms were found in all the ontology 
developed prior to the test on TQA, namely UO and SQ.  
A comparison of the second and third rows shows that 
109–30=79 reused terms came from SQ.  The same pattern 
repeats in the two remaining phases of the experiment:  
After the scenario modification but before TQC, 1485 
axioms were added to the SRI system.  These required 583 
terms of which 40 existed in the UO and 254 were found in 
the UO, SQ, and TQA prior ontologies.  Similarly, 
between the test and retest on TQC, 215 terms were 
required for 304 axioms; only 24 of these existed in the 
UO, and 100 more were found in the ontologies developed 
after the UO. 

 

It is unclear why prior ontologies provided significantly 
less support for encoding axioms than for encoding test 
questions.  In both cases the support came in the form of 
terms, but why are the terms required to define axioms less 
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likely to be in a prior ontology than the terms needed for 
test questions?  One possibility is that test questions 
include fewer terms that represent individuals (e.g., 
#$HassiMessaoud-Refinery) than do axioms, so terms in 
test questions are less specific and more likely to exist in a 
prior ontology than terms in axioms.  We will be looking at 
our data more closely to see whether this is the case. 

 

 SRI 

 Axioms n k s 

SQ | UO 1703 461 51 .11 

From TQA to TQA retest | UO 123 195 30 .15 

From TQA to TQA retest | SQ 123 195 109 .56 

From TQA retest to TQC | UO 1485 583 40 .09 

From TQA retest to TQC | TQA 1485 583 254 .44 

From TQC to TQC retest | UO 304 215 24 .11 

From TQC to TQC retest | TQC 304 215 124 .58 

Table 3:  SRI measured the number of terms required to add 
problem-solving axioms to their system, and the reuse of terms 
from the UO and subsequent ontology efforts. 

Discussion 

Does prior knowledge in ontologies and domain-specific 
knowledge bases facilitate the development of knowledge-
based systems?  Our results suggest that the answer 
depends on the kind of prior knowledge, who is using it, 
and what it is used for. The HPKB upper ontology, 3000 
very general concepts, was less useful than other 
ontologies, including Cyc and ontologies developed 
specifically for the crisis management domain. This said, 
Cyc/Tek made more effective use of the upper ontology:  
33% of the terms it reused came from there whereas 22% 
of the terms SRI reused came from the upper ontology.  
Why is this? One reason is probably that Cycorp 
developed the upper ontology and was more familiar with 
it than SRI.  Knowledge engineers tend to define terms for 
themselves if they cannot quickly find the terms in an 
available ontology. Once this happens – once a term is 
defined anew instead of reused – the knowledge base starts 
to diverge from the available ontology, because the new 
definition will rarely be identical with the prior one.  
Another reason for disparity in reuse of the upper ontology 
is that SRI preferred their own definitions of concepts to 
the available ones.  We lack the data to assess which of 
these explanations accounts for most of the disparity.  

 

As to the uses of prior knowledge, our data hint at the 
possibility that prior knowledge is less useful for encoding 
axioms than it is for encoding test questions. 

 

Whereas reuse of the upper ontology depends on who is 
using it, other ontologies seem to account for a roughly 
constant (60% – 66%) rate of reuse, irrespective of who 
developed these ontologies.  For SRI, these ontologies 
were just those developed for batches of questions SQ, 
TQA, TQB, TQC and TQD.  To be concrete, the 60% of 
the terms required for TQC were defined while encoding 
SQ, TQA and TQB. The picture is a bit cloudier for 
Cyc/Tek because they had the Cyc ontology throughout, 
and we lack the data to say whether the 66% non-UO reuse 
came from terms defined for previous batches or from Cyc.   

 

Despite this ambiguity we speculate that in the process of 
building a domain-specific knowledge-based system, the 
rate of reuse of terms defined earlier in the process is 60%-
70%.  Whether this figure is due to a few terms being 
reused very frequently or many terms being reused 
moderately, we do not have the data to judge.  Although 
the rate of reuse of terms from very general ontologies may 
be significantly lower (e.g., 15%–30%), the real advantage 
of these ontologies probably comes from helping 
knowledge engineers organize their knowledge bases along 
sound ontological lines.  However, we can offer no data 
pertinent to this use of general ontologies.   

Conclusion 

Many questions remain.  Our data are crude summaries of 
reuse of terms, they do not tell us much about the work that 
knowledge engineers do when they build domain-specific 
knowledge bases.  How long will a knowledge engineer 
hunt for a relevant term or axiom in a prior ontology?  
How rapidly do knowledge bases diverge from available 
ontologies if knowledge engineers don’t find the terms 
they need in the ontologies?  By what process does a 
knowledge engineer reuse not an individual term but a 
larger fragment of an ontology, including axioms?  How 
does a very general ontology inform the design of 
knowledge bases, and what factors affect whether 
knowledge engineers take advantage of the ontology? Why 
do prior ontologies apparently provide less support for 
encoding axioms than for encoding test questions? Finally, 
will the results we report here generalize to domains other 
than crisis management and research groups other than SRI 
and Cyc/Tek? We expect to answer some of these 
questions retrospectively by analyzing other data from the 
first year of the HPKB program and prospectively by 
designing experiments for the second year.  
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Abstract 
Abstract:  Multi-modal and heterogeneous logic reasoning 
is of increasing importance within the AI community.  The 
GIS based  ArcView COA Sketcher (ArCS) sketch and 
translation tool developed under DARPA’s High 
Performance Knowledge Bases program is an example of an 
enabling tool towards that goal.  Army Course of Action 
(COA) sketches can be drawn and translated automatically 
into statements in a formal logic with the tool.  The 
statements are inputs to a geographic reasoner as well as 
systems reasoning about plans. This paper discusses the 
design of the sketching tool, and issues in creating an 
effective correspondence between the visual and logical 
representations of a COA.  

Introduction  

   Multi-modal and heterogeneous logic reasoning is of 
increasing importance within the AI community. Visual  
presentation of information through  diagrams, sketches 
and charts is so ubiquitous in human communication that it 
has long been desired to have automated reasoning systems 
taking visual representations as inputs. More generally, 
research effort has been devoted to developing logics for 
diagrammatic reasoning. For example, [Fisler, 1996] has 
developed a heterogeneous logic for hardware verification 
of design diagrams. A visual representation has also been 
used in the teaching of classical logic itself [Barwise & 
Etchemendy, 1995].  

 DARPA’s High Performance Knowledge Bases 
(HPKB) program provided us with an excellent 
opportunity for developing tools for visual inputs to 
systems performing knowledge-rich symbolic reasoning. 
The purpose of the HPKB program is to advance the state 
of the art in knowledge representation and reasoning and 
create applications incorporating advanced AI techniques  
that are relevant to the military  [Cohen et al 1998].  One 
application of this program is to develop  systems for 
evaluating and critiquing operational army plans for 
courses of action on the battlefield. 

 Army Courses of Action (COAs) are high-level 
battle plans. They describe the intended actions of friendly 
troops on the battlefield on the basis of possible enemy 
deployment and actions. Human planners specify COAs by 
means of a sketch and a textual description in accordance 
with army practice [Army, 1997]. 

 The sketch consists of standardized symbology 
placed on a map. It presents map-based information about 

the battlefield  the location of friendly and enemy troops, 
terrain features and obstacles, military regions and 
boundaries, possible battle positions and maneuver paths 
 as well as the planned tactical actions.    

 The textual description describes in a controlled 
English grammar the actions of the troops, their temporal 
relation and their intended purpose within the overall plan. 

 The COA statement and the COA sketch are in 
part complementary to each other but there is also  
significant overlap between them. As a result, the two parts 
of the COA need to be combined through a fusion process. 

 

        COA Sketches as Inputs to Plan Critiquers 

    The process of getting from the original COA inputs 
(statement and sketch) to the formal inputs needed for the 
critiquing systems presents challenges that are worth some 
discussion. One is that reasoning for plan evaluation relies 
on qualitative concepts and relative spatial relations 
between objects rather than the absolute geographical 
position of objects or the geographical profile of a region. 
However, it is the latter that is explicitly recorded in the 
sketch.  For example, a critique checking to determine 
whether an action can successfully accomplish its stated 
purpose to enable another action will check whether the 
targets of the enabling action include all enemy troops on 
the path of the enabled action. This means that the 
reasoning system needs information making reference to 
concepts like spatial subsumption, betweenness along a 
non-cyclic path, trafficability of terrain, etc. 

 This implies that a translator should pass 
information about the absolute location of objects on to a 
geographic reasoner that can calculate qualitative spatial 
relations and estimate the trafficability of regions.  
Moreover, many concepts that are important to critiquers, 
such as the forward edge or the rear area of the battlefield, 
although implicitly depicted in the sketch, do not 
correspond to any specific symbol and need both 
geographic reasoning and domain specific knowledge to be 
identified with the proper region on the map.   

 Our GIS based  ArcView COA Sketcher (ArCS) 
sketch and translation tool was, therefore, designed to 
provide formal inputs to a geographic reasoner as well as 
systems reasoning about plans. COA sketches can be 
drawn and translated automatically into statements in a 
formal logic with the tool.  In what follows, we will first 

mailto:apease@teknowledge.com


 

discuss the software environment for COA critique and 
ArCS development.  Then we will introduce an exemplar 
COA sketch drawn with ArCS and will use it in our 
discussion of the design of the translation process. Issues 
in creating an effective correspondence between the visual 
and logical representations of a COA are presented 
afterwards.  
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Execution Environment 

 We utilized Cyc [Lenat, 1995] as our knowledge 
representation and inference environment for the COA 
critique development. Relevant army doctrine is coded as  
logical statements in MELD/CycL [Cycorp, 1998].  
Instances of COA statements and sketches are translated 
into MELD and imported into Cyc.  Cyc is an inference 
system that can directly use these inputs to answer queries 
posed by the critiquer.  Each COA critique was 
implemented as a problem solving method (PSM) [Gil, 
1996] (this could be also termed a knowledge based 
procedure) and coded in Java.  Each PSM made several 
calls to Cyc with a knowledge base query.  Subsequent 
queries were created based on the results from earlier 
queries posed by the PSM.  The most widely used PSM for 
COA critiquing could be called critique and refine.  An 
initial query would be posed to determine if there was a 
problem of a particular sort.  Further queries would zero in 
on the specifics of the problem so that the answer returned 
could provide the user with enough information necessary 

to effect a repair.  

 We utilized GeoRep [Ferguson, et al, 1999] as our 
geo-spatial reasoner.  GeoRep can take as inputs the 
latitudes and longitudes of all objects drawn on the COA 
sketch and answer location and proximity questions with 
its qualitative spatial reasoning. It also provides 
trafficability support.  For details see [Donlon et al, 1999]. 

 We used the ArcView Geographic Information 
System [ESRI, 1996:1] as our sketching environment.  The 
Avenue [ESRI, 1996:2] scripting language was used both 
for handling user interaction and creating the MELD 
logical statement output created from the sketch. The 
sketch outputs in MELD followed the common ontology 
developed for the domain and were used by GeoRep, the 
Cyc-based critiquer and the critiquing systems of GMU 
(built with Disciple KA shell [Tecuci et al, 1999]) and ISI 
(built with the expect KA shell [Swartout & Gil, 1996]), 
and UMass’s knowledge-based war gaming simulator 
[Atkin et al, 1999].  

Statement
Translator

ArCS
(ArcView COA Sketcher)

Critiquer

Geographic
ReasonerOntologies

Java Integration COA Environment

 

      
 COA Example 

 
 The graphic above shows a standard army COA 
drawn within ArCS. A human planner uses the ArCS tool 
to depict the deployment of friendly and enemy forces, the 
actions undertaken by friendly forces, the organization of 
the battlefield, including the areas of responsibility for 
friendly forces, and various features of the terrain. When 
the planner finishes the sketch, a click of the translation 
button allows thousands of logical statements to be 
generated instantly.  This specific COA sketch, for 
instance, was translated into about 4,000 MELD 
statements. 

 To fulfill the drawing and translation function of 
ArCS, we made TrueType fonts for composable military 
symbols, and defined a mapping between the military 
symbology and  ArcView’s drawing functions, as well as 
another mapping between the military symbology and the 
MELD logical  statements. 

 For example, the box symbol 
signifies a friendly military unit with the X 
denoting that the unit has the echelon or size 
of brigade.  This particular unit is known as 
a task organized composition unit, which means that it is 
composed of subunits temporarily assigned for the purpose 
of a battle or larger operation.  In this case there are two 
mechanized units (denoted by the squares) and one 
armored unit (denoted by the triangle) that comprise the 
brigade.  The system knows that the next echelon smaller 
than brigade is regiment so it asserts that the subunits are 
regiment sized. 

 The arrows in the diagram 
denote actions that the units are 



 

        COASpecificationMicrotheory). 
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supposed to undertake.  The symbol denotes that the unit at 
the tail of the arrow is performing a fix task against the unit 
at the head of the arrow.  A fix task is one in which the 
object is to prevent the enemy unit from moving.  This can 
be done by artillery fire.  In this particular case, the enemy 
is further constrained by the presence of a minefield 
(shown as three circles inside a vertical 
rectangle) between itself and the opposing unit.  

F: (genlMt BlueDivisionCOA1-1Mt  
           ModernMilitaryTacticsMt). 
 

 The COA also contains named areas 
such as "Objective Slam" which 
serve as the targets of actions or 
zones of responsibility for particular units.  
The planner indicates that the friendly 
mission is to seize the objective 
by drawing the circle and 
arrow graphic pointing into 

the area. 

 The specification of the military units involved in 
the COA relies on the ontology of military units developed 
by [Andersen & Petersen, 1997].  Each unit has a specific 
military specialty, echelon, and strength.  The 
relationInstanceExistsCount statements deserve further 
explanation.  They are based on relations that are the 
MELD equivalents of frame predicates, which indicate that 
the relation given as the first argument holds between the 
instance given as the second argument and N instances of 
the class specified in the third argument where N is the 
fourth argument.  This statement is equivalent to 
(following  

notation in [Sowa, 1999])  
(∃x:arg3)(x@arg4∧arg1(arg2,x)). 

 Another important class of graphics is the lines 
that divide the battlefield.  For example, the line, which has 
two vertical bars on it in the top center of the sketch, 
indicates that the area of 
responsibility for the battalion 
directly above it ends at the line.  
The vertical lines are called phase lines and provide an 
indication of the phasing of the plan. Phase lines indicate 
the position of units during different phases of the plan.  
The phase line acquires its full meaning when combined 
with temporal information provided in the 
COA statement. The vertical line which is 
marked "PL Amber" at the bottom center of 
the COA indicates that the line is named as 
indicated and is further specified as an "LD" or Line of 
Departure which denotes the point from which an attack 
takes place. 

 
Constant: BlueMechBgd1. 
in Mt: BlueDivisionCOA1-1Mt. 
F: (isa BlueMechBgd1  
       MechanizedInfantryUnit-
MilitarySpecialty). 
F: (isa BlueMechBgd1  
        ArmoredUnit-MilitarySpecialty). 
F: (echelonOfUnit BlueMechBgd1  
                  Brigade-UnitDesignation). 
F: (sovereignAllegianceOfOrg BlueMechBgd1  
                             Blue-Side). 
F: (troopStrengthOfUnit BlueMechBgd1  
                        RegularStatus). 
F: (relationInstanceExistsCount  
       subOrgs-Direct  
       BlueMechBgd1  
       ArmoredUnit-MilitarySpecialty  
       1). 
F: (relationInstanceExistsCount  
       subOrgs-Direct   
       BlueMechBgd1  
       MechanizedUnit-MilitarySpecialty  

Translation of the Symbols        2). 
 

 We first define a context or, in Cyc terminology, a 
microtheory in which all statements about the COA would 
be placed.  This allows knowledge about the particular 
plan to be clearly differentiated from knowledge about the 
domain of all COAs.  Also, by virtue of inserting the COA 
microtheory within the lattice of other Cyc microtheories, 
it allows for reasoning to be made more efficient by 
excluding inheritance from reasoning context which are 
irrelevant to the COA domain.  In the MELD syntax below 
Constant introduces a new symbol to the system.  in Mt 
indicates that all assertions below it are to be made within 
the given context.  F indicates that a formula or logical 
statement is to follow.  isa states that an instance is a 
member of a class.  genlMt states that one microtheory 
inherits the contents of another. 

 The system also names the areas that the units are 
placed in and have responsibility over.   In the statements 
following, the shape and geographic location of areas of 
interest are given.  While the Cyc-based reasoner does not 
use these metric points directly, they are generated and 
passed to the geographic reasoner which turns the metric 
statements into propositional, or relative statements about 
the geographic entities and passes those statements back to 
the critiquer. 

 
Constant: Loc36. 
in Mt: BlueDivisionCOA1-1Mt. 
F: (isa Loc36 GeographicalRegion). 
F: (objectFoundInLocation BlueMechBgd1 Loc36). 
F: (shape Loc36 (AbstractFn Square)). 
 
F: (longitude (CenterFn Loc36)   

(Degree-UnitOfAngularMeasure -97.5515)). 
Constant: BlueDivisionCOA1-1Mt. F: (latitude (CenterFn Loc36)  
in Mt: BaseKB. (Degree-UnitOfAngularMeasure 37.8412)). 
F: (isa BlueDivisionCOA1-1Mt  

mailto:x@arg4
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Constant: P241. 
F: (isa P241 GeographicalThing). 
F: (longitude P241  
(Degree-UnitOfAngularMeasure -97.5087)). 

F: (latitude P241  
(Degree-UnitOfAngularMeasure 37.7984)). 

 
;; etc (similar for other points) 
 
F: (pointsOfBorder (BorderFn Loc36)  

(TheList P241 P242 P243 P244)). 
 

 Note that a lengthy specification of the 
coordinates specifying the center and the termini of the 
region (P241, P242, P243, and P244) is necessary for the 
geographic reasoner to recognize the shape of the region. 
These specifications for the regions, as well as those for 
the polylines and other geometric shapes, are the inputs to 
the geographic reasoner only. The critiquing systems use 
the derived results from the geographic reasoner such as 
the statements about the shape and degree of trafficability 
of a region given in the code below. 

 Because ArCS is built on top of a geographic 
information system, it is possible to overlay the sketch on 
digital terrain data and to use that information for further 
processing.  One of the results of such processing [Donlon 
et al, 1999] is to generate information about the 
trafficability of regions.  We can then attach to polygons 
that define those regions information about their 
trafficability. 

 
Constant: COO2. 
in Mt: BlueDivisionCOA1-1Mt. 
F: (isa COO2 GeographicalRegion). 
F: (degreeOfTrafficability COO2  
         TerrainSeverelyRestricted). 
F: (shape COO2 (AbstractFn Polygon)). 

 

 The sketch tool also provides the human planner 
with the ability to describe features that do not exist at the 
beginning of the plan but rather come into being as the 
plan unfolds, such as candidate battle positions. For 
example, 

 
Constant: BP10. 
in Mt: BlueDivisionCOA1-1Mt. 
F: (isa BP10 GeographicalRegion). 
F: (candidateBattlePositionOfCOA  
       BlueDivisionCOA1-1Mt BP10). 
F: (shape BP10 (AbstractFn Polygon)). 
 

 As discussed above, the phase lines and lines of 
responsibility collectively define regions that units are 
responsible for controlling at different points in time.  
Temporal information is not generated from the sketch and 
as a result not shown here.  However, the process of 
translating the statements and combining them with the 

ArCS output does result in temporal information being 
provided. 

 
Constant: Loc54. 
in Mt: BlueDivisionCOA1-1Mt. 
F: (isa Loc54 PhaseLineBoundedArea). 
F: (sectorOfResponsibility BlueMechBgd1 
Loc54). 
F: (hasPartAsBorder Loc54 BoundaryBtnS). 
 

  The tasks assigned to units are also produced 
from the sketch and further specified in the text. 

 
Constant: Fix1. 
in Mt: BlueDivisionCOA1-1Mt. 
F: (isa Fix1 Fix-MilitaryTask). 
F: (unitAssignedToTask Fix1 BlueMechBgd1). 
F: (objectActedOn Fix1 RedMechRegt1). 

Issues in Translation 

 The representations provided above are relatively 
simple.  The challenge was to define representations that 
could be easily and unambiguously generated by the sketch 
tool and yet still be powerful enough to represent all the 
information of interest and be merged successfully with the 
more complicated representations generated from parsing 
the controlled English COA text.   

 An additional complexity existed with regards to 
the domain.  Because military COAs have been intended 
for understanding and use by humans, they contain 
considerable ambiguity and flexibility.  For example, the 
presence of a unit at a particular point on a COA sketch 
does not necessarily mean that the unit will in fact be 
located at that precise point at any time during the battle.  
It is merely a candidate position that is consistent with the 
intent and responsibilities of the planner.  The challenge 
was to provide the utility of such intended flexibility while 
not complicating the system design.  In the end, this was 
handled by ensuring that the reasoning that operated on the 
sketch outputs was not sensitive to the exact positions.  In 
this sense, the critiquing rules embodied a tolerance for 
imprecision. Accomplishing this required incorporating 
geographic reasoning which asserted qualitative statements 
about spatial relations as described earlier.  

 A similar consideration was that the units 
themselves are intended as prototypes or descriptions of 
units rather than references to real world units.  For 
example, by placing a mechanized division symbol on the 
map, the human planner is not asserting that a particular 
division such as the 5th Mechanized division will be 
positioned at that location but rather that any available 
mechanized division can play that role in the plan.  There 
again, the critiquing rules needed to take this into account. 
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Related Work 

 The nuSketch tool of Northwestern University 
[Forbus et al, 2000], under development during the HPKB 
program, has been intended to have a similar functionality 
to ArCS. It uses in addition a combination of speech and 
gesture to specify COA elements in order to free 
commanders from  mouse and menus.  Important 
differences include the fact that the ArCS system used a 
commercial geographic information system as its base. 

Conclusion 

 

 The work described here was part of the effort to 
provide formal inputs to the various reasoning systems. We 
created a rich sketching tool that allowed a user to specify 
a battlefield plan in standard Army symbology.  That 
symbology was converted to a logical representation, 
which combined with statement translation, could be 
effectively employed for reasoning about the suitability, 
feasibility and correctness of a military Course of Action.   
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Abstract 
A key to delivering a scalable solution for the integration of 
knowledge based problem solvers is the notion of semantic 
integration.  We show how semantic integration using a 
very large knowledge base provides particular leverage in 
achieving a robust solution.  We describe some existing 
approaches to this problem and then detail our solution 
applied to several knowledge based problem solvers.  We 
conclude with lessons learned and directions for future 
research. 
 

Introduction 
  In this paper, we will explain the notion of senatic 
integration.  We will show this in the context of our work  
on the DARPA High Performance Knowledge Bases 
(HPKB) program.  The goals of HPKB are to advance the 
state of the art in knowledge based problem solving, 
knowledge representation, reasoning and knowledge 
capture.   

The HPKB program participants are constituted into three 
groups: Challenge Problem Developers, Integrators and 
Technology Developers.  The Challenge Problem 
Developers are charged with creating test problems which 
address tasks which are relevant to DARPA's military 
customers and are amendable to a knowledge based 
solution.  The Challenge Problems (CPs) must balance 
several objectives including creating a problem which is 
solvable and yet challenging enough such that it forces the 
application and development of new technologies.  
Integrators are charged with solving the CPs and applying 
whatever technologies are needed to accomplish that task.  
Technology developers are charged with supplying the 
integrators with the component technology solutions.  

In our role as an integrator we are tasked in part with 
creating an integrated architecture which allows domain 
specific problem solvers to work together and contribute to 
an overall knowledge based solution.  Our basis for this 
integration is the use of a single very large knowledge 
base.  In this first year of the program we have successfully 
integrated several problem solvers using the Cyc system 
(Lenat, 1995; Lenat & Guha, 1990). 

 

 

 

Background 
Software integration is a difficult problem.  Systems that 
were not designed to work together always have a host of 
different assumptions.   

We will divide integration into three layers of connectivity 
issues.  The first is what we will call transport layer issues. 
This concerns the mechanisms of how to get the bits from 
one process or machine to another.  Solutions include 
sockets, RMI and CORBA. Another set of issues are found 
at what we'll call the syntax layer.  This concerns how to 
convert number formats, "syntactic sugar" or the labels of 
data. The more challenging task is to deal with what we 
will call semantic connectivity.  The integrator must 
understand the meaning of each data element.  
Considerable related work has occurred in the database 
community on the issue of integrating databases at the 
semantic level [Wiederhold, 1996]. 

The current state of the practice in software integration 
consists largely of interfacing pairs of systems as needed.  
We term this pairwise integration.  It is a problem because 
pairwise integration doesn't scale up.  Unanticipated uses 
are hard to cover later.  Chains of integrated systems 
evolve at best into stovepipe systems.   Each integration is 
only as general as it needs to be to solve the problem at 
hand. 

Some success has been achieved in low level integration 
and reuse.  Systems which use the same scientific 
subroutine libraries or graphics packages at least are forced 
into similar representational choices for low level data.  
DARPA has also invested in early efforts to create large 
reuse libraries which can assist in integrating large systems 
at higher levels (Carrico, 1997).  Considerable work has 
gone into expressing a generic semantics of plans in an 
object oriented format (Pease & Carrico, 1997; Pease & 
Carrico, 1997:2).  Additional work in applying that generic 
semantics to domain specific applications is promising 
(Pease & Albericci, 1998). 

The development of ontologies for integrating 
manufacturing planning applications (Tate, 1998) and 
workflow (Lee, 1996) have also been ongoing. 

Another option for semantic integration is to perform 
software mediation (Park et al, 1997).  This could be seen 
as a variant on pairwise integration, but because integration 
is done by knowledge based means, there is an expression 



 

of the explicit semantics of the conversion.  This renders 
the effort more reusable. 
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Personnel at Kestrel Institute have been successful at 
defining formal specifications for data and using those 
theories to integrate formally specified software [Srinivas 
& Jullig, 1995].  In addition, personnel at Cycorp have 
successfully applied Cyc to the integration of multiple 
databases. 

 

The Solution 
  We used a large general purpose knowledge base (Cyc) to 
link problem solver input and output to the semantic 
concepts the input and output denote.  We augmented the 
knowledge base with domain or problem specific 
knowledge to support each specific problem solver.  We 
used knowledge base axioms to create a declarative 
specification of how problem solver concepts map onto the 
knowledge base.  This approach will now be described for 
several problem solvers. 

Network Flow Problem Solver 
One of the HPKB challenge problems can be broadly 
characterized as providing a battlefield commander with a 
knowledge level analysis of the characteristics of the 
battlefield.  One element of this is determining how and to 
what extent goods and personnel can be transported from 
one location to another.  To solve this problem we 
integrated a Network Flow Problem Solver (NFPS) 
supplied by personnel at Kestrel Institute. 

In the first application of the problem solver we needed to 
supply a set of roads and the cities they connect and the 
carrying capacities of the roads in number of vehicles per 
hour.  Note that in this example we were not concerned 
with sophisticated traffic flow estimation which includes 
local factors such as temporary backups and congestion.  
After processing, we wanted the output to be a list of the 
actual capacities of each road given that each exists as part 
of a total system. Figure 1 shows an example with 
capacities on each link.  A is given as an infinite source 
and E is an infinite sink. 

Figure 1 - Network Capacities 

 
Figure 2 shows the same network with the situated 
capacities on each link.  This graph reflects the fact that the 
only links to node E are bottlenecks.  Therefore, even 

though link B-F can carry 80 units per time period, the 

actual capacity is limited by the link F-E. 
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Figure 2 - Situated Capacities 

 
Note that the NFPS has no knowledge of roads or vehicles, 
only abstract notions of nodes, arcs, capacities and situated 
capacities.  Our next step was to link these abstract notions 
with concrete notions of roads and vehicles.   

Cycorp was already in the process of creating a detailed 
abstract theory of networks and had already created 
concepts for roads, vehicles and the flow of traffic.  A 
crucial concept which was not present at first was the 
notion of a situated capacity as described above.. 

Our next step in integration was to create a system 
executive and GUI which allowed user to enter and 
visualize road information, transformed the road 
information into input for the NFPS, retrieved the output 
from the NFPS and then made assertions to the Cyc KB 
based on that output. 

Figure 3 shows the output of NFPS after processing by the 
system executive.  The statements are sent to Cyc.  Ellipses 
denote repetition of the same type of statement for all the 
nodes or arcs in the network.  #$isa is the Cyc instance-of 
relationship in which an individual is declared to be a 

member of a class. 

(#$isa  #$Network1  
#$NetworkFlowSystem-Bounded) 

(#$flowTypeOfSystem  #$Network1 
#$carPerHour) 

(#$isa #$Arc1 #$Path-Simple) 
… 
(#$linkFromToInSystem  #$Arc1  

#$Node1  
#$Node2  
#$Network1) 

… 
(#$equals  (#$LocalLinkFlowCapacityFn  

#$Arc1 #$Network1)  
         40)) 
… 
(#$equals  (#$SituatedLinkFlowCapacityFn  

#$Arc1 #$Network1)  
20) 

…  
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Figure 3 - NFPS output to Cyc 

 



 

The workarounds challenge problem is another part of the 
overall battlespace problem for HPKB.  It addresses the 
task of finding engineering workarounds for a disrupted 
transportation network.  When confronted with a damaged 
bridge or road, military engineers must find repair 
solutions which address the capabilities of the vehicles 
which need to pass, the available engineering assets, and 
the characteristics of the terrain and damaged 
transportation infrastructure. 

 
A block diagram of the entire system is shown in Figure 4. 

NFPS

System
Executive

Cyc

Road
Network

Road
Network

Situated
Flows

CycL
Assertions

User
This problem was posed by the Challenge Problem 
Developers as a database which characterizes the damaged 
infrastructure, engineering assets and terrain.  Our 
integration task was to transform that database into a set of 
assertions to a knowledge base and to link that to 
knowledge based workaround reasoner which is built in 
Cyc.  That reasoner then performs workarounds problem 
solving to recommend a solution. 

Figure 4 - Network Flow Problem Solver 
block diagram 

The database has several records which are utilized in 
specifying the current problem (from [Jones, 1998]): Dynamical Recognizers 

The central thesis of this technology development task is 
that representations of dynamics are the foundation for 
knowledge level coding of verbs (Cohen, 1998).  While the 
first iterations of the challenge problem do not truly stress 
this technology, an initial integration provided practical 
feedback on its eventual application as part of a 
sophisticated knowledge based system. 

1. Unit. A military unit with its nominal and 
actual properties 

2. Vehicle-Of. Assigns vehicle counts to Units 
(by type of vehicle) 

3. Equipment-Of. Assigns equipment counts to 
Units (by equipment type & vehicle type) 

4. Unit-Of. Assigns specific Units as parts of other 
Unit The battlespace challenge problem provides a large data set 

describing the movements of battlefield entities over a 
several hour period.  The first level of understanding the 
significance of the data is to classify the vehicles and 
battlefield sites based the movement data.  We integrated 
several recognizers that use statistical pattern matching to 
identify patterns in the data.  Each recognizer identifies one 

type 
locat

5. Site. A geographically located militarily-
relevant place 

6. Site-Point. A point that is part of the 
definition of site geometry 

7. Site-Part. Assigns specific Features/Sub-
Sites to some Site 

8. Site-Attrib. Free-form attributes for Sites 
9. Damage. Specific degradation of some 

Site/Feature 
10. Damage-Attrib.  Free-form attributes for Feature-

Damage 
The workarounds problem solver first maps these database 
records into concepts in the knowledge base.  It then poses 
hypothetical actions to Cyc for a determination of whether 
the actors in the problem are capable of the actions.  

The 
partic
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(#$latitude  #$Refueling34 
      
 (#$Degrees 54)) 
(#$longitude #$Refueling34 
      
 (#$Degrees 25)) 
(#$after  

(#$StartFn  #$Refueling34 
(#$DayFn 14  

(#$MonthFn #$February 
(#$YearFn 1996))))) 
of physical battlefield location.  Two of these 
ions are refueling stations and command posts. 

Actions may need to be decomposed or enabled by the 
results of other actions.  A block diagram of the system is 
given in Figure 6.  

statements in Figure 5 assert the location of a 
ular site and the time at which its existance began. 

ure 5 - Sample Site Recognizer Assertions 

orkarounds Inputs 
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Figure 7 - Full Battlespace System System
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Conclusion 

In this paper we have attempted to show the process of 
achieving semantic integration by describing the 
integration of several problem solvers.  We have shown 
how these problem solvers are specialized for a particular 
problem.  We have alluded to the benefits provided by our 
integration approach over a more conventional pairwise 
integration. 

Figure 6 - Workarounds Problem Solver 
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of Verbs. Submitted to ECAI-98. 
The route finding tool will work with the outputs from the 
trafficability tool.  It looks at the list of movement costs as 
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